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We propose a novel Bayesian methodology which uses random walks for rapid inference of statistical
properties of undirected networks with weighted or unweighted edges. Our formalism yields high-accuracy
estimates of the probability distribution of any network node-based property, and of the network size, after
only a small fraction of network nodes has been explored. The Bayesian nature of our approach provides
rigorous estimates of all parameter uncertainties. We demonstrate our framework on several standard
examples, including random, scale-free, and small-world networks, and apply it to study epidemic
spreading on a scale-free network. We also infer properties of the large-scale network formed by hyperlinks
between Wikipedia pages.
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Over the past few years, our lives have become increas-
ingly dependent on large-scale networks. In addition to the
original computer-based networks such as the World Wide
Web and the Internet, many online social networks have
emerged, notably Twitter and Facebook. Our professional
and personal activities are influenced daily by knowledge-
sharing online services such as Wikipedia and YouTube.
More generally, complex networks describe a broad spec-
trum of systems in nature, science, technology, and society
[1,2]. Many of these networks are large and evolving,
making investigation of their statistical properties a chal-
lenging task. In particular, estimating the network size
becomes nontrivial if the network is too large to visit every
node. Consequently, predicting various network statistics,
typically from random samples of limited size, has attracted
considerable attention in the literature [3–11].
Here we develop a Bayesian approach to network

sampling by random walks (RWs) [5,9]. Unlike previous
results, our framework can be used to build posterior
probability distributions for any network node-based quan-
tity of interest. Our approach reproduces several previously
known global network statistics estimators within a single
formalism, automatically removes statistical biases caused
by RW sampling [5,6], and yields standard results in the
uniform sampling limit. Surprisingly, accurate estimates of
various network properties, including its size, are obtained
after examining only a small fraction of all network nodes.
Consider a RW on a network of N nodes with weighted

edges fwjig, wherewji is the rate of transition from node i to
node j. At each step thewalkerwill transition to a neighboring
nodewith a probabilityPði → jÞ ¼ wji=

P
k∈fnngiwki, where

the sum is over all nearest neighbors of node i. We subdivide
all network nodes into sets Sx based on the value of some
property x, such as the number of links connected to the
current node, known as the node degree [1]; there are Nx

nodes in each set and N x distinct sets. We assume that the
property in question is discrete; continuous properties can
be discretized by binning. We focus on undirected networks
with symmetric rates, wji ¼ wij. In this case, the stationary
probability for the RW to occupy node i, πi, can be
determined using the steady-state master equation [12,13]:X

j∈fnngi
½πjPðj → iÞ − πiPði → jÞ� ¼ 0: ð1Þ

Equation (1) is satisfied if πi ∼ wi ¼
P

k∈fnngiwki, where wi

is the total outward rate. For unweighted networks, the
node’s stationary probability is proportional to its degree ki
[14].With normalization, the stationary probabilities become
πi ¼ wi=

P
N
i¼1 wi.

If the walker starts from a node with property x, the
average number of steps between subsequent visits to any
node within the set Sx, also known as the mean return time
(RT), is given by [15]

hlix ¼
1P
i∈Sxπi

: ð2Þ

In the case of undirected networks,

hlix ¼
hwi

pxhwix
; ð3Þ

where px ¼ Nx=N is the fraction of nodes with property x,
hwi ¼ N−1PN

i¼1 wi, and hwix ¼ N−1
x

PNx
i¼1 wi.

The probability of making Δl steps between subsequent
visits to Sx, PðΔlÞ, is asymptotically exponential for
arbitrary finite networks [16]:

PðΔlÞ ≃ qxe−qxΔl; ð4Þ
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where qx ¼ hli−1x ≪ 1 is the hitting rate of the nodes
within Sx. We find empirically that the exponential ansatz
for PðΔlÞ is sufficiently accurate for our purposes,
although in principle our approach is not limited to it.
The likelihood that during a single RW with l ≫ 1 steps
the walker has visited Kx nodes in Sx is then given by the
Poisson distribution:

PðKxjqxÞ ¼
ðqxlÞKx

Kx!
e−qxl: ð5Þ

This likelihood function is maximized by q̂x ¼ Kx=l,
which implies Kx ≪ l. Assuming a uniform prior for qx
in the [0, 1] range, the posterior probability density for qx
becomes

PðqxjKxÞ ¼
1

BðKx;lÞ
qKx
x e−qxl; ð6Þ

where BðKx;lÞ ¼
R
1
0 dqxq

Kx
x e−qxl ≃Kx!=lKxþ1 is a nor-

malization constant. Thus Eq. (6) is closely approximated
by a gamma distribution Γðqx;Kx þ 1;lÞ, which becomes
Gaussian in the Kx ≫ 1 limit, with the mean q̄x ¼ q̂x and
the standard deviation σqx ¼ q̂x=

ffiffiffiffiffiffi
Kx

p
.

This result in combination with Eq. (3) yields a maxi-
mum likelihood estimate (MLE) and a standard error for the
probability px of the property x:

p̂x ¼
Kx=hwixPN x
x Kx=hwix

and σpx
¼ p̂xffiffiffiffiffiffi

Kx
p : ð7Þ

If the property of the node i is its total outward rate wi
discretized into N w bins, Eq. (7) yields

p̂wi
¼ Kwi

=wiPN w
j¼1Kwj

=wj

; ð8Þ

whereKwj
is the number of visits to nodes with total outward

rates in the bin j. For unweighted networks (wij ¼ 1; ∀ i; j),
p̂wi

reduces to p̂ki , the network degree distribution [1].
For an arbitrary node property x, each set Sx can be

additionally subdivided by the binned value of w, such that

p̂x ¼
XN w

j¼1

p̂x;wj
¼

XN w

j¼1

Kx;wj

wj

�XN w

j¼1

Kwj

wj
: ð9Þ

Here, Kx;wj
is the number of visits to nodes with both

property x and the total outward rates in the bin j. Thus, the
knowledge of Kwj

, Kx;wj
, and wj is sufficient to compute

the MLE of any property x and estimate its uncertainty
[Eq. (7)]. Note that the division by wj in Eq. (9) corrects for
the bias introduced by RW sampling [5–7].

The MLE of the average outward rate is given by

chwi ¼ XN w

i¼1

wip̂wi
¼ lPN w

j¼1 Kwj
=wj

; ð10Þ

where we used
PN w

i¼1 Kwi
¼ l. The uncertainty of this

estimate can be evaluated using σ2hwi ¼
PN w

i¼1 w
2
i σ

2
pwi

as well

as Eqs. (7) and (8), to yield σhwi ¼ chwi= ffiffiffi
l

p
, in accordance

with the central limit theorem. Similarly, for an arbitrary
property x

bhxi ¼ X
x

xp̂x and σ2hxi ¼
X
x

x2σ2px
: ð11Þ

Let us now suppose that the network nodes are divided
into two sets: Np randomly chosen nodes, which we shall
refer to as pseudotargets, and all the rest. The pseudotarget
nodes are drawn prior to exploring the network, so that their
average outward rate hwip is known. Equations (3) and (5)
can now be used to construct the posterior probability
for the network size (assuming a uniform prior in the
½Np;Nmax� range, whereNmax denotes an upper limit onN):

PðNjKpÞ ¼
N−Kp exp

�
− Nphwip

Nhwi l
�

PNmax

Ñ¼Np
Ñ−Kp exp

�
− Nphwip

Ñhwi l
� ; ð12Þ

where Kp is the number of visits to pseudotargets. Note
that using uniform priors in both Eqs. (6) and (12) does not
affect the results as long as Kx and Kp, respectively, are
sufficiently large. Similar to Eq. (6), we find that this
posterior probability rapidly becomes Gaussian as Kp

increases, with

N̂ ¼ lNphwip
Kphwi

and σN ¼ N̂ffiffiffiffiffiffi
Kp

p : ð13Þ

Using Eq. (10), we obtain

N̂ ¼ Nphwip
Kp

XN w

j¼1

Kwj

wj
: ð14Þ

Note that the error in N̂ can be reduced either through
increasing Np or assigning highly connected nodes
(network hubs) to be pseudotargets. In the Np ¼ 1 case,
Eq. (13) recovers the network size estimator from Ref. [9].
The error estimate in Eq. (13), which is based on the

exponential ansatz [Eq. (4)], may become too small if
pseudotargets are placed too close to each other on the
network, such that their RT statistics becomes correlated,
i.e., dependent on the number of links between neighboring
pseudotargets. However, we expect this effect to be
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minimal in systems with dw < df, where dw is the RW
dimension and df is the fractal dimension [15–17] and,
more generally, in small-world networks, even if df is
difficult to estimate accurately in such systems. Thus we
expect our methodology to be applicable to real-life net-
works, which are predominantly small world and scale free
[1,2]. By the same argument, choosing pseudotargets from
a small random sample of the network nodes is preferable
to clustered pseudotarget positioning, and, in fact, enables
accurate predictions of the network size in highly disjoint
and clustered systems.
In the case of a complete unweighted network in which

each node is connected to all N nodes (including itself),
RW sampling reduces to uniform sampling with replace-
ment. In this limit, Eq. (7) yields p̂x ¼ Kx=l and σpx

¼ffiffiffiffiffiffi
Kx

p
=l, consistent with the standard results based on

binomial sampling. Moreover, N̂ ¼ lNp=Kp in this case,
reproducing the classic Lincoln-Petersen estimator of
biological population sizes by the mark and recapture
method [18] (the differences between uniform sampling
with and without replacement can be neglected in the
Kp ≪ Np limit). These results remain valid for any net-
work in which the total outward rate w is the same for every
node. Note that the key difference between RW sampling
and uniform sampling is that the former preferentially visits
the nodes with larger w values, so that, given l, σpx

is
smaller for RW if hwix > hwi, and vice versa.
We have implemented the above theoretical framework

as follows: for each network, Np pseudotargets are ran-
domly drawn and their hwip is computed. Commencing the
RW from one of these pseudotargets, we record l, Kp,
fKwg, and fKx;wg for a desired set of node properties x. At
each step in the RW, Eqs. (7)–(14) can then be used to infer
various network properties.
To verify the validity of our algorithm on standard model

systems, we have studied three unweighted, undirected
networks: an Erdos-Renyi (ER) random graph [19], a scale-
free (SF) random graph [1], and a small-world (SW)
network [20]. Each network has N ¼ 106 nodes. The
ER network was constructed by randomly assigning
⌈N logðNÞ=2⌉ edges between nodes, the SF network by
the preferential attachment method [1] with m ¼ 2 edges
attached to new nodes, and the SW network as described in
Ref. [21], with the shortcut probability p ¼ 1=2.
For each network, Np ¼ 103 pseudotargets were ran-

domly drawn and the network was subsequently explored
with a RW for l ¼ 105 steps, visiting at most 10% of all
nodes. Besides network size and the node degree distri-
bution, we have focused on posterior probabilities of the
average degree of nearest-neighbor nodes, which is a
measure of network degree assortativity,

hknnii ≡ k−1i
X

j∈fnngi
kj; ð15Þ

the clustering coefficient [3],

Ci ≡ 2y
kiðki − 1Þ ; ð16Þ

where y is the total number of links shared by the nearest
neighbors of node i, and a measure of the degree inho-
mogeneity [6]

ρi ≡
X

j∈fnngi
ðk−1=2i − k−1=2j Þ2: ð17Þ

A comprehensive summary of the inferred network
statistics can be found in the Supplemental Material
[22]. Although network topologies of these three systems
are quite different, all statistics we have considered are
predicted accurately. As an extreme example of network
size inference in a highly disjoint system, we have
considered two clusters connected by a single link [22].
Accurate prediction of the total network size is still possible
in such a system if (i) pseudotargets are chosen as a random
subset of all network nodes to minimize correlation effects
and (ii) hki is similar in each cluster. The latter requirement
can be relaxed if pseudotargets are chosen, e.g., among
network hubs within a narrow range of k; this extension
will be addressed in future work.
Next, we have constructed a generalized ER network

with N ¼ 106 nodes and weighted edges. After placing all
the edges as in the unweighted ER network, a loop was
added to each node with probability p ¼ 1=2. All loops and
edges were then assigned a symmetric weight wij ¼ wji

drawn from an exponential distribution with unit mean.
For this system, we have collected statistics on each node’s
total outward rate, wi, loop weight, wloop

i ¼ wii (note that
wii ¼ 0 for nodes without loops), outward rate averaged
over all nearest neighbors of node i, hwnnii, and average
nearest-neighbor loop weight, hwloop

nn ii. We have again
employed a RW with l ¼ 105 steps and Np ¼ 103 ran-
domly drawn pseudotargets. Although the RT distribution
for this system deviates from purely exponential due to
loops, all the network statistics we have considered are
again predicted accurately [22]. Thus our methodology is
equally applicable to studies of weighted networks with
loops.
After validating our approach on model systems, we

have demonstrated its effectiveness in a more realistic
setting, by tracking an epidemic spreading on a scale-free
network in the traffic-driven epidemiological (TDE) model
[23]. Following Ref. [23], we have generated the under-
lying network using a hidden-metric approach, which
employs a tunable parameter α to control the degree of
local node clustering [24,25]. The number of links in each
node is drawn from a power-law distribution, pki ∼ ki−γ .
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For our network, we have chosen N ¼ 105, γ ¼ 2.6, and
α ¼ 2 (which leads to significant clustering).
Epidemic propagation was simulated through the

exchange of W contagion packets between nodes (see
Ref. [23] for details). Briefly, each node can be in either
susceptible or infected state; the simulation starts with a
single infected node. When a packet moves from node i to
node j on the network, node j becomes infected with the
spreading probability β if node i was infected; infected
nodes can also recover with rate μ, set to 1 without loss of
generality. We have focused on the case in which contagion
packets perform RWs between randomly assigned initial
and destination nodes. Once a packet reaches its destina-
tion, it is removed and a new packet is added to keep W
constant. On average, each packet moves once per unit
simulation time. Under this choice of packet dynamics,
there is a critical value of βc ¼ ðhki2=hk2iÞN=W above
which a sustained epidemic outbreak is observed [23]. We

have set W ¼ 2N and β ¼ 7 × 10−1 ≫ βc ¼ 6.24 × 10−2

in the simulation.
We have used a single RW with l ¼ 104 steps and

Np ¼ 103 pseudotargets to verify the validity of our
exponential ansatz [Fig. 1(a)] and predict the node degree
distribution [Fig. 1(b)]; several other statistics relevant to
the study of epidemics on networks [26] are listed in
Table I. In addition, we have tracked time-dependent
evolution of the fraction of infected nodes ρðtÞ
[Fig. 1(c)]. We have assumed that nodes can be queried
much faster than the time scales on which the epidemic
spreads, and thus matched l steps of our RW sampling to
the unit time interval in the TDE model [Fig. 1(c),
Table I]. Finally, we have predicted βc using the evolving
system’s snapshot, again under the assumption that RW
sampling is fast compared to the time scales of the
epidemics [Fig. 1(d)].
Next, we have examined the network formed by hyper-

links between English articles on Wikipedia. Links con-
necting an article to itself were disregarded, multiple links
between articles were counted as one, and automatic
redirects were disallowed, resulting in an unweighted,
undirected, loopless network consisting of all English
articles, redirect pages, and disambiguation pages [27].
To assign pseudotargets, the first 5000 pages were drawn
from Wikipedia’s static HTML dumps. A single randomly
chosen link was then taken from each of these pages and
the node it pointed to was designated as a pseudotarget,
resulting in Np ¼ 4769. This procedure increases the
likelihood that the pseudotargets are hubs with a large
number of links, facilitating collection of the network
statistics since Kp grows more rapidly [4,9,14].
We have focused on several statistics that facilitate

comparison with known properties of Wikipedia: the size
of each page in bytes, ν (as provided by Wikipedia), and
two variables χr, χd ∈ f0; 1g representing whether a page is
a redirect or a disambiguation page, respectively. The
quantities hχri, hχdi, and hνai≡ hð1 − χrÞνi then give
the fraction of redirect pages, disambiguation pages, and
the average storage space in bytes of English articles
(Wikipedia excludes redirect pages from its estimates of
the number of articles [27]). The RW was run for l ¼
5 × 104 steps, with the resulting predictions shown in
Table II and Fig. 2.

FIG. 1. Epidemic spreading statistics. (a) Pseudotarget RT
distribution. Equation (4) parametrized by exact qp is shown
as a cyan solid line. (b) MLE� 2σ (red circles with error bars) for
the node degree distribution; exact distribution is shown as a blue
solid line and its average is shown as a vertical line.
(c) MLE� 2σ (red circles with error bars) for the fraction of
infected nodes ρðtÞ computed at unit time intervals, with the exact
value shown as a dashed blue line. (d) Histograms of βc MLEs
obtained using 104 independent runs with l ¼ 102, 103, 104

steps. Exact value is shown as a vertical dashed line.

TABLE I. TDE model statistics summary. Shown are MLE and 95% confidence interval (�2σ) for each quantity,
followed by exact values for the TDE model system. All predictions are based on a single representative RW with
l ¼ 104 steps corresponding to the unit time interval in the TDE model.

N̂
N

chki
hki

d⟪knn⟫
⟪knn⟫

dhCi
hCi

dW=N
W=N�2σN �2σhki �2σ⟪knn⟫ �2σhCi �2σW=N

1.01 × 105 105 8.02 8.14 64.6 67.1 0.251 0.255 2.000 2.000
�0.08 × 105 �0.16 �4.2 �0.011 �0.045
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We find that Wikipedia contains 13.4 million pages, each
of which is connected on average to 48 other pages. The
majority of Wikipedia pages, 60%, are redirect pages, and
4% are disambiguation pages. We estimate the total number
of English articles (including disambiguation pages) to be
5.35 × 106, and the total number of redirect pages to be
8.05 × 106, within the confidence intervals of the values
reported by Wikipedia [28] (Table II). We find the total size
of English articles in Wikipedia to be 35.8 GB, in
reasonable agreement with the Wikipedia statement that
text alone accounts for 27.6 GB of the storage space of
English articles [29].
Figure 2(a) demonstrates that the assumption of the

exponential RT distribution is reasonable for Wikipedia,
with some enrichment for short RTs due to the choice of
network hubs as pseudotargets. Figure 2(b) shows how the
estimate of the total number of Wikipedia pages evolves as
Kp increases. As in many other Internet-based networks
[30], the degree distribution of Wikipedia pages is scale
free [Fig. 2(c)]. In contrast, the distribution of page sizes is
not scale free, and the size of an average Wikipedia page is
only 2.7 kB [Fig. 2(d), Table II].

In conclusion, we have presented a general Bayesian
approach to inferring various network properties, including
its size, by using RWs that visit only a small fraction of all
network nodes. Our approach works for both weighted and
unweighted undirected networks, and remains accurate in
the presence of loops and node clustering. Our main
assumption, that of the exponentiality of the RT distribu-
tion, appears to hold in all the cases we have examined
explicitly, and can be relaxed if necessary. Our future work
will focus on extending this methodology to directed and
time-dependent networks.
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